Search and classification based language model adaptation
نویسندگان
چکیده
Adaptation techniques in language modeling have shown growing potentials in improving speech recognition performance. For topic adaptation, a set of pre-defined topic-specific language models are typically used, and adaptation is achieved through adjusting the interpolation weights. However, mismatch between the test data and the pre-defined models inevitably exists and is left untreated in the static approach. Instead of tuning the parameters in the existing models, this paper describes a method that dynamically extracts relevant documents from training sources according to intermediate decoding hypotheses to build new targeted language models. Different from general search-based document collection, a new and effective ranking method is used here for candidate extraction. The targeted language models are interpolated with the static topic language models and a general language model, and used for lattice rescoring. The proposed adaptation technique is implemented in a state-of-the-art Mandarin broadcast transcription system, and evaluated on the GALE task. We show that static topic adaptation reduces the relative character error rate by 4.9%. It is further shown that the proposed dynamic adaptation technique attains an additional 10.3% reduction in error rate. Index Terms – LM Rescoring, Topic Adaptation, Broadcast Transcription
منابع مشابه
Optimizing the Grade Classification Model of Mineralized Zones Using a Learning Method Based on Harmony Search Algorithm
The classification of mineralized areas into different groups based on mineral grade and prospectivity is a practical problem in the area of optimal risk, time, and cost management of exploration projects. The purpose of this paper was to present a new approach for optimizing the grade classification model of an orebody. That is to say, through hybridizing machine learning with a metaheuristic ...
متن کاملAPPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...
متن کاملAdvertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملA Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems
Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کامل